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SOIL EROSION MODELING 

Soil erosion is a worldwide environmental problem that degrades soil productivity and water 

quality, causes sedimentation and increases the probability of agricultural land degradation. 

Erosion control requires a quantitative and qualitative evaluation of potential soil erosion on a 

specific site, and the knowledge of terrain information, soils, land use system and management 

practices. Revised Universal Soil Erosion Equation (RUSLE) is widely used to estimate soil erosion.  

This study has applied Geographical Information System (GIS) and Revised Universal Soil Loss 

Equation (RUSLE) to predict the annual average soil loss rate in Tusheti Area (East-north Georgia) 

To achieve the goals, the RUSLE factors were calculated using the local and global data. The soil 

data used to develop the soil erodibility factor (K), and Digital Elevation model of the study area 

was used to generate the topographical factor (LS). The values of cover-factor (C) was estimated 

from satellite image. The rainfall-runoff erosivity (R) was derived from monthly rainfall data and 

Fourier index. 

The model represents how climate, soil, topography, and land use affect rill and gully soil erosion 

caused by raindrop impact and surface runoff. It has been extensively used to estimate soil 

erosion loss, to assess soil erosion risk, and to guide development and conservation plans in order 

to control erosion under different land-cover conditions, such as pasture lands and disturbed 

forest lands. (Environmental GIS: Lab 10) 

The RUSLE is expressed as: 

 

A=R*K*LS*C*P 

Where: 

 

A = Soil loss per unit of area, t ha-1; 

R = Rainfall-runoff erosivity factor, MJ ha-1 mm h-1; 

K = Soil erodibility factor (t ha-1)/(MJ ha-1 mm h-1); 

L = Slope length factor 

S = Slope factor 

C = Cover-management factor 

P = Conservation practice factor 
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Rainfall erosivity factor (R Factor) 
 

R is a measure of erosivity of rainfall which is the product of storm kinetic energy and maximum 

30 minute intensity EI30. When other factors are constant, storm losses from rainfall are directly 

proportional to the product of total kinetic energy of the storm (E) times its 30 minute intensity 

(I30). (Arnoldus, 1978) 

 

Data 
 

We used a CHELSA (Climatologies at high resolution for the earth’s land surface areas) high 

resolution (1 km) climate data, which covers whole Tusheti area. The source of data is 

www.chelsa-climate.org. The climate data includes monthly mean precipitation pattern and 

covers a total of 34 years, between 1979 and 2013. This climate data includes incorporation of 

topo-climate (e.g. orographic rainfall & wind fields).  

 The data is based on a quasi-mechanistical statistical downscaling of the ERA-interim global 

atmospheric analysis produced by the EuropeanCentre for Medium-Range Weather Forecasts  
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(www.ecmwf.int ). ERA-interim model uses radiance data from all available satellites, 

scatterometer wind data and many other axillary data.  

  

Estimation of R-factor 
 

R-factors links to rainfall and runoff erosion index. R-factor is defined as a sum of individual storm 

EI-values (abbreviation for energy multiplied by the maximum intensity in 30 min) for a year 

averaged over long time periods (more than 20 years) to accommodate apparent cyclical rainfall 

patterns. However, this calculation of R-factor requires daily climatic data (extracted from 

pluviograms) which cover a longer period of time.   

Unfortunately, there is only one meteorological station in the Tusheti area. First, it is impossible 

to estimate R-factor as described before due to the lack of longer period of time data. Second, 

interpolation of the rainfall data to whole area from one station will greatly compromise 

accuracy. 

However, regional rainfall erosivity can be estimate based on the Fournier index modified by 

Arnoldus (1980) by using monthly and annual precipitation data: 

F = ∑ (
𝑃2

𝑖

𝑃
)

12

𝑖=0
 [1], 

where Pi is the monthly average amount of precipitation for month i (mm), P is the average 

annual quantity of precipitation (mm).    

 

Erosivity class  F 
Verry low  0 - 60  

Low  60 – 90  

Moderate  90 - 120  

Severe  120 - 160  

Very severe  > 160  

Extremely severe   

Table 1. The erosivity classes by modified Fournier index (F). 

There are a several equations to transfer the Fournier Index (F) to the R-factor (R) described in 

the papers. Each of equations have a limitations in predicting R-factor values. We tried several 

relations between F and R. Finally, we used next equation, which were presented in the paper of 

Kenneth G. Renard et al. (1994): 

Rfactor=0.07397F1.847[2] 

 

http://www.ecmwf.int/
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Results: 

Figure 1. Fournier Index (1979-2013) for the Tusheti area. 

 

            Figure 2. R-factor based on Fournier Index (1979-2013) for the Tusheti area. 
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Soil Erodibility index (K Factor)  

 

Soil erodibility factor represents both susceptibility of soil to erosion and rate of runoff, as 

measured under the standards unit plot condition. The value of this factor is affected by 

infiltration capacity and structural stability of the soil.  

So, the K value run from 1.0 to 0.01 with the highest values for soils with high content of silt or 

very find send. For example, soils high in clay have low K value, about 0.05 to 0.15, because they 

resistant to detachment. 

Coarse textured soils, such as sandy soils, have low K values about 0.05 to 0.2, because of low 

runoff even though these soils are easily detached. 

Medium textured soils, such as the silt loam soils, have a moderate K values, about 0.25 to 0.04, 

because they are moderately susceptible to detachment and they produce moderate runoff. 

Soils having high silt content are most erodible of most soils. They are easily detached: tend to 

crust and produce high rates of runoff.  Values of K for these soils to be greater than 0.4 (Weesies 

A) 

The Soil erodibility factor was calculated using the soil properties obtained from Georgian 

Agriculture University Soil-lab by using equation 1 given by (Wischmeier and Smith 1978). This 

equation was settled upon due to availability of data on soil structure, organic matter and 

permeability. The equation reads as shown below: 

 

K = 2.1x10-6 x M1.14 (12-OM) + 0.025 (S-3) + 0.0325 (P-2) 

 

Where; 

K = soil erodibility factor in t.h/MJ.mm 

M = (Percentage very fine sand + Percentage silt) × (100 – Percentage clay) 

OM = Percentage of organic matter 

S = Code according to the soil structure (very fine granular = 1, fine granular = 2, coarse granular 

= 3, lattice or massive = 4), and P = Code according to the permeability/drainage class (fast = 1, 

fast to moderately fast = 2, moderately fast= 3, moderately fast to slow = 4, slow = 5, very slow 

= 6) (Wischmeier and Smith 1978) 
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1:200,000 scale soil map was used for stratification of K factor. Composed map was rasterized 

and splined for avoiding sharp boundaries between soil classes. 

 

 

Fig 3.  Vector Soil map of Tusheti area 

 

Slope and Slope length (LS) Factor 

 

The LS-factor is a combination of the effects of slope length and slope steepness on the erosion 

of a slope. The calculation LS topographic factor on a grid is using Digital Elevation Model (DEM) 

and applying to each pixel in the DEM. DEM provides necessary basic information about terrain, 

slope, aspect, drainage area and network.  However, in the beginning it is necessary to fill any 

spurious single-cell nodata cells and sinks within the source DEM data by using an interactive 

routine.  

Desmet and Govers (1997) proved LS-factor model which is appropriate for landscape-scale soil 

erosion modeling, and can capture complex topography, due to slope steepness is not uniform 

for the whole area.  
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Desmet and Govers (1996) proposed a two-dimensional terrain using the concept of the unit-

contributing area:  

Li,j = [(𝐴i,j + 𝐷2)m+1−( 𝐴i,j) m+1 ]/[(𝐷)m+2 ∗ (xi,j)m ∗ (22.13)m]    [1] 

where 𝐴i,j is the contributing area at the inlet of grid cell (i,j) measured in m2. D is the grid cell 

size (meters), xi,j = sin𝑎i,j + cos𝑎i,j, the 𝑎i,j is the aspect direction of the grid cell (i,j).  

m is related to the ratio β of the rill to interill erosion: 

m = β/β+1 [2] 

where ,  

β = sinθ/0.0896/[ 0.56 + 3∗(sinθ)0.8] [3] 

 θ is the slope angle in degrees. The m ranges between 0 and 1, and approaches 0 when the ratio 

of rill to interill erosion is close to 0.  

 

 

Fig 4.  Raster map of LS factor 
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Cover management factor (C) 

 

Method to estimate C-factor. C-factors links to the cover-management characteristics and 

represents the effect of surface cover and roughness on soil erosion. C-factor depends on 

vegetation type, stage of growth and cover, because vegetation cover protects the soil by 

dissipating the raindrop energy before reaching soil surface. For example, nearly exposed soil has 

a C-factor value near one then when protected soil has a C-factor value near zero (Toy et al., 

1999). Since NDVI values have correlation with C-factor (De Jong et al., 1999) many researchers 

used regression analysis to estimate C-factor values for land cover.  

First of all we applied algorithm which allows calculation of Bottom Of Atmosphere (BOA) 

reflectance from Top Of Atmosphere (TOA) reflectance images available in Level-1C products to 

the Sentinel-2 data. Then, we calculated Normalized Difference Vegetation Index (NDVI) and Red Edge 

Normalized Difference Vegetation Index (reNDVI) based on near infra-red (NIR), red edge (RE) and red (R) 

bands.   

 

NDVI=(NIR-R)/(NIR+R) 

reNDVI=(RE+R)/(RE-R) 

 

reNDVI is more sensitive to the different type of vegetation than NDVI. So for our further analysis, 

we chose reNDVI to approximate C-values using next provisional formula (Van der Knijff et al., 

2000):  

 

𝐶 = exp[−𝑎
𝑟𝑒𝑁𝐷𝑉𝐼

(𝑏 − re𝑁𝐷𝑉𝐼)
 ] 

 

a, b are parameters that determine the shape of the reNDVI-C curve. An a-value of 2 and a b-

value of 1 seem to give reasonable results (Van der Knijff et al., 1999).  
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Fig 5.  Raster map of C factor 

 

The Support Practice (P Factor) 

 

The support Practice is the support or land management practice factor. In RUSLE, the support 

practice factor is generally applied to disturbed lands and represents how surface and 

management practices such as contouring, terracing and strip cropping are used to reduce soil 

erosion. For areas where is no support practice the P factor is set to 1 (Simms A.D 2003). Tusheti 

area have no support practice, or it’s no applicable to the model, so we set P to 1. 

Support practice factor (P-factor) is rarely taken into account in soil erosion risk modeling at large 

area, as it is difficult to estimate it with a high accuracy. Different types of practice techniques 

are known in agriculture, but in Tusheti only historical remnants of terraces are presented that 

became parts of the natural terrain.  

To refine the current model the detailed DEM (Digital elevation model) is needed. Existing 

1:25,000 scale DEM is not accurate and sensitive enough for such small elevation change. 

Therefore, for receiving better results we recommend to use more detailed DEM (Approx. 1-2m 

accuracy), which unfortunately is not available for the project at this moment.  
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Accuracy Assessment  

 

Assessments of the accuracy of RUSLE are impeded by many factors. Field studies are costly, labor 

intensive, and time consuming, which may lead to few replications. Variability in data caused by 

differences in plot preparation or soil characteristics can result in misleading conclusions. It is 

hard to find hillslopes without variation in soil properties where numerous tests can be replicated 

(Foster et al., 1999). 

The final result of this study was compared to results from different countries (European 

Communities) and concluded that the overall results of this study is in an acceptable range. 
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LAND COVER CLASSIFICATION 

 

Land cover corresponds to a physical description of space, the observed (bio) physical cover of 

the earth's surface (DI GREGORIO & JANSEN 1997). It is that which overlays or currently covers 

the ground. This description enables various biophysical categories to be distinguished - basically, 

areas of vegetation (trees, bushes, fields, lawns), bare soil (even if this is a lack of cover), hard 

surfaces (rocks, buildings) and wet areas and bodies of water (sheets of water and watercourses, 

wetlands).  

The survey territory of Tusheti has particularly diverse landscape, and what is more, the terrain, 

what causes certain problems with the use of Remote Sensing data, specifically in the creation of 

land cover. It should be mentioned in the very first place, that Tusheti active terrain (difference 

in altitudes and sloping flanks) creates shaded sections, which are "no data" areas for optical 

satellites. Of course, there are different satellite image processing methods, which allow for the 

illumination of shadows on the image. These statistic methods are widely used in cases, when 

there are digital altitude models of higher resolution that that of the image, with the help of 

which models the darkened pixels can be corrected. Unfortunately there are no such accurate 

data for Tusheti territory.  

The mention should also be made of the impact of rock sloughing on decoding of some classes 

of grasslands, as such mixed areas often create certain spectral noise, complicating the 

classification process.  

In the course of supervised classification of satellite images, the reference data are being used; 

e.g. GPS coordinates, which describe land cover types. The absence of such data further 

complicates the interpretation process.  

 

Data and Methodology  
 

Based on the above factors it was decided to use the following type of satellite image and 

classification algorithm.  

Sentinel-2 is an Earth observation mission developed by ESA as part of the Copernicus 

Programme to perform terrestrial observations in support of services such as forest monitoring, 

land cover changes detection, and natural disaster management.  

The Sentinel-2 mission has the following capabilities: 

 Multi-spectral data with 13 bands in the visible, near infrared, and short wave 

infrared part of the spectrum 

https://en.wikipedia.org/wiki/Multispectral_image
https://en.wikipedia.org/wiki/Visible_spectrum
https://en.wikipedia.org/wiki/Infrared#Regions_within_the_infrared
https://en.wikipedia.org/wiki/Infrared#Regions_within_the_infrared
https://en.wikipedia.org/wiki/Infrared#Regions_within_the_infrared
https://en.wikipedia.org/wiki/Electromagnetic_spectrum
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 Systematic global coverage of land surfaces from 56° S to 84° N, coastal waters, and all of 

the Mediterranean Sea 

 Revisiting every 5 days under the same viewing angles. At high latitudes, Sentinel-2 swath 

overlap and some regions will be observed twice or more every 5 days, but with different 

viewing angles. 

 Spatial resolution of 10 m, 20 m and 60 m 

 290 km field of view 

 Free and open data policy 

 

 

 

 

 

 

 

 

 

 

        Fig 6. Sentinel-2 spectral bands 

 

SVM-Support Vector Machine 
Support Vector Machine (SVM) is a supervised classification method derived from statistical 

learning theory that often yields good classification results from complex and noisy data. It 

separates the classes with a decision surface that maximizes the margin between the classes. The 

surface is often called the optimal hyperplane, and the data points closest to the hyperplane are 

called support vectors. The support vectors are the critical elements of the training set. (Harris 

Geospatial Center).  

 

Image Classification 
 

Pre classification 

We applied the atmospheric, terrain and cirrus correction of Top-Of-Atmosphere to the 

downloaded Level-1C data by using Sen2Cor processor in SNAP (Sentinel Application Platform: 

https://en.wikipedia.org/wiki/Mediterranean_Sea
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http://step.esa.int/main/snap-2-0-out-now/). Using Sen2Cor application Bottom-Of-

Atmosphere corrected reflectance image (Level-1A) was created.  

 

Classification 
 

Although we lacked field data of land cover types, we applied Jeffries-Matusita, Transformed 

Divergence algorithm for the reliability of training classes and their separation, with the help of 

which algorithm the training pixels with homogeneous spectral characteristics were identified. 

Finally, we compiled the following raster samples: 9-Grassland; 4-Deciduous Forest; 2 Coniferous 

forest; 1-Shrubland; 1-Bare soil; 1-Scree; 1-Shadows; 1-Clouds and 1-Permanent snow. 

We applied Support Vector Machine Classification algorithm, for which algorithm we used the 

following parameters:  

 Kernel type: Polynomial 

 Degree of Kernel Pol: 2 

 Bias in Kernel Function: 1 

 Penalty Parameter: 500 

 

 

Post Classification 

 

Although the classes were separated spectrally, it deemed impossible to identify them without 

field data, hence in order to avoid thematic errors, we amalgamated thematically similar types 

of classes.  

E.g. from 9 grassland only one was left, one from 4-Deciduous Forest, etc.  

In the course of post-classification the image pixels were aggregated, when independent pixels 

were joined with nearby largest classes, as a result of which process the land cover was cleaned 

from surplus speckles and noises.  

According to contract terms we had to establish 4 classes of grassland apart from classic land 

cover types, however extending field data of only Gometsari gorge to whole Tusheti would have 

resulted in major error, hence we generated NDVI - Normalized Difference Vegetation Index and 

conditionally isolated four classes with different grassland biomass (high biomass, medium 

biomass, low and very low biomass). See land cover map.  

For quantitative assessment of grassland biomasses collected in the field and for their mapping 

on the example of only Gometsari gorge see the next chapter, p.  

http://step.esa.int/main/snap-2-0-out-now/
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Accuracy assessment 
 

Land cover accuracy assessment is done on the basis of field data, however in our case no such 

data were available and hence the verification was done only on the basis of old, more detailed 

satellite image and old 1959-60 topographic map with 1:25,000 scale, what was of more visual, 

than statistic type.  

We hope, that during the next phases of the project the Ground truthing points of field data will 

be taken and drawn map will be verified and improved using relevant statistic methodology.  

Spatial accuracy and scale of the land cover depends on the resolution of the initial satellite 

image, with 10m pixel size, what allows for the creation of only 1:25,000 scale map. 

 

 

Fig 7. Comparison between 1m (IKONOS) and 10 m LandCover data 
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GRASSLAND BIOMASS ESTIMATION BY USING RS DATA 

 

Data 
 

We used multi-spectral and high resolution remote sensing data from the Sentinel-2 mission. 

These data have a free access and could be regularly downloading on the Sentinels Scientific Data 

Hub site (https://scihub.copernicus.eu/).  

The Sentinel-2 Multispectral Instrument (MSI) acquires 13 spectral bands. Visible and visible 

near-infrared (VNIR) portion of the electromagnetic spectrum has resolution 10 metres: Band2 

(490 nm), Band3 (560 nm), Band4 (665 nm) and Band8 (842 nm). Spatial resolution 20 meters 

have next six bands: Band5 (705 nm), Band6 (740 nm), Band7 (783 nm), Band8a (865 nm), Band11 

(1610 nm) and Band12 (2190 nm), where Band11 and Band 12 are Short-wave infrared bands. 

Band1 (443 nm), Band9 (940 nm) and Band10 (1375 nm) have 60 m spatial resolution. 

 

 

https://scihub.copernicus.eu/
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Due to the necessarily to use combination of the different bands with different resolution, we 

applied a resampling (SNAP Toolbox) and used resolution 10 meter. The scale of output map 

could be estimate based on this resolution, as suggested Waldo Tobler in 1987. For instance, if 

the raster resolution is 10 meter, than the resolution double and multiply to 1000. Accordingly, 

the estimated map scale will be 1:20,000.  

Remote sensing data with Level-1C (top of atmosphere reflectance) were downloaded, where 

the granules are 100x100 km2 in UTM/WGS84 projection. These products contain applied 

radiometric and geometric corrections (including ortho-rectification and spatial registration).  

Sentinel-2 data acquisition time (5 August 2016) was selected according to the time at which the 

field data were sampled (in the beginning of August 2016) to observe approximately same state 

for the vegetation.  

The aboveground oven-dry-weight of grass can be measured directly by collecting all plants on 

the square meter area, oven-drying all components and then weighing them. This procedure was 

done in the 28 places of the grasslands and pastures in the area around Tusheti, Gometsari gorge 

(with villages Dochu, Beghela, Jvarboseli and Verkhovani). Please, see the distribution of the 

samples on the figure N.  

 

       Fig 8. Distribution of samples from field trip. 
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One by one meter square samples were taken randomly within 10 by 10 meter square. The GPS 

coordinates were given of the upper left corner of the 10 by 10 meter square areas. Orientation 

of samples areas were taken randomly also.  

 

 Methods 

We applied the atmospheric, terrain and cirrus correction of Top-Of-Atmosphere to the 

downloaded Level-1C data by using Sen2Cor processor in SNAP (Sentinel Application Platform: 

http://step.esa.int/main/snap-2-0-out-now/). Sen2Cor creates Bottom-Of-Atmosphere 

corrected reflectance image (Level-1A). Then, we used this image to calculate different 

Vegetation indices and  biophysical parameters in the SNAP such as NDVI (Normalized Difference 

Vegetation Index), Red Edge NDVI (rNDVI), LAI (Leaf Area Index) and leaf chlorophyll content 

(LAI_cab), FAPAR (Fraction of Absorbed Photosynthetically Active Radiation).  

 

LAI_cab parameter, which control physical and physiological processes in vegetation canopies, 

shows much better correlation with dry biomass obtained from the field trip than others 

parameters. Therefore, we decided to use this parameter and dry biomass estimation from the 

field trip to create a linear regression model.  

 

So, the distribution of the Gometsari gorge dry biomass was obtained from LAI_cab parameter 

and field trip measurements of the dry biomass by using linear regression models of different 

degrees (1, 2) and multi-variables linear regression model of degree1. The product of biomass 

ton per hectare for a given strata and the corresponding area will result in an estimate of the 

total biomass for the region. 

 

 

 

 

 

http://step.esa.int/main/snap-2-0-out-now/
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1) Linear model Polynomial (Degree 1):      

DR_W(LAI_cab) = p1*LAI_cab + p2 [1], 

where  p1 = 3.153, p2 =-43.23 

Goodness of fit:  R2: 0.7002,   Adjusted R2: 0.6886,   RMSE: 101.7 
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2) Linear model Polynomial (Degree 2):     

 

DR_W(LAI_cab) = p1*LAI_cab^2 + p2*LAI_cab + p3 [2], 

 

where p1 = 0.007844, p2 =1.247, p3 =50.78               

Goodness of fit:  R2: 0.7204,   Adjusted R2: 0.698,   RMSE: 100.1 

 

 

 

 

3) Linear model Polynomial (Degree 1, 1), multi variables:  

DR_W (LAI_cab, reNDVI) = p00 + p10*LAI_cab + p01*rNDVI [3], 

 

where p00 = 67.6, p10 = 3.776, p01 = -417.5   

Goodness of fit: R2: 0.7095, Adjusted R2: 0.6862,   RMSE: 102 
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We applied these models to calculate spatial distributions of dry biomass based on remote 

sensing information (LAI_cab from Sentinel-2).  

 

Models of the dry biomass were used to classify the land covers (grassland and pasture areas). 

Classification of the modelled dry weight biomass was done by the distribution of the percentage 

of values. The mean values of data was accepted as 50%. Other percentages (10%, 90%, 100%) 

were revised from 50%.  We assumed that, 

- 90-100% vegetation cover shows good growing conditions and this class was defined as 

grassland with high biomass. 

- 50-90% vegetation covers shows poor growing conditions and this class was defined as 

grassland with poor biomass. 

- 10-50% vegetation cover class was defined as open vegetation type. 

- 0-10% vegetation cover was defined as rock and scree. 
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Results 
 

Accuracy assessment was done by using modelled data (DR_Wmod) and data from the field trip 

(DR_Wobs): 

Accuracy=(DR_Wobs – DR_Wmod)/ DR_Wobs  

Accuracy is the probability (%) of a reference (observed) pixel being correctly modelled. 
 

Linear model 

Models and *R2 

(+names of files) 

Goodness of fit between 
modelled and observed 
data (Mean Square 
Error) 

Accuracy 

(%) 

Standard 

deviation 

of model 

Standard 

deviation 

of observed 

data 

Polynomial 2 [2]  

0.7204 

(Polinom2DR1.tif 

DR_Polin2_Reg.jpg) 

0.95 18.7829 1.5403 1.8217 

Polynomial 1 [1]  

0.7002 

(Polinom1DR.tif 

DR_Polin1_Reg.jpg) 

1.0113 16.3857 1.5193 1.8217 

Multi variables 

polynomial 1,1 [3]  

0.7095 

    

*A high R2 value does not guarantee that the model fits the data well 
 

Recommendations 
 

It is a necessary to improve samples distribution and their numbers for each class to make a 

better the biomass estimation. Lillesand and Kiefer suggested 50 samples for each land-cover 

class as rule of thumb.  

The sample size (N) can be estimated based on binomial probability theory:  

N=z2(p)(q)/E2 [5],  

Where p is the expected percent accuracy of the entire map, q=p-100, E is the allowable error, 

and z=2(sigma) covering 95.4% of image. Example, if expected accuracy is 85% at an allowable 

error of 5%, the number of points for a reliable result is 203. 
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